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C
ontrolling light�matter interaction
at the nanoscale is one of the para-
mount goals of nanophotonics,1�3

which has stimulated a large deal of work in
recent years intended to understand and
characterizemetallic nanostructures that sup-
port surface plasmons.4�8 These excitations
are capable of confining light fields in regions
well below the diffraction limit, while they
simultaneously display large enhancement
of the electromagnetic field.9,10 Because of
these properties, surface plasmons have been
used in different applications ranging from
ultrasensitive biosensing11,12 to nano-optical
circuits.13 Additionally, the large fields asso-
ciated with surface plasmons can produce
strong interactions with other photonic ele-
ments, such as quantum emitters, thus giv-
ing rise to newhybrid plasmon-emitter systems
exhibiting unique optical response.14�24

The possibility of reaching the quantum
regime using plasmonic systems faces diffi-
cult challenges but offers great opportuni-
ties.25�27 For instance, the nonlinear behav-
ior arising from the quantum nature of both a
fermionic emitter and light has been exten-
sively investigated on theoretical and experi-
mental grounds over the past decade.28,29 An
interesting example is the photon blockade
effect,30 which has been experimentally ob-
served inatomscoupled tocavities,31 aswell as
in superconducting circuits.32 The essential
ingredient of these experiments is the achieve-
ment of strong light�matter coupling, char-
acterized by an interaction energy exceeding
the damping introduced by cavity losses.
Nonetheless, reaching the strong-coupling re-
gime is a delicate task that has so far been
reserved to a handful of cavity quantum elec-
trodynamics (QED) experiments.
The extension of this regime to quantum

emitters interacting with plasmons sup-
ported by metallic nanoparticles has been
recently pursued20�24 in order to realize
quantum behavior in more robust and com-
pact systems than the elaborate QED setups.

However, this goal seems to be very difficult
to achieve using standard plasmonic materi-
als such as noble metals due to the relatively
large losses inherent in thesematerials, which
limit the lifetime of the plasmons to∼10 opti-
cal cycles. A promising alternative approach
consists of using plasmons supported by
doped graphene nanodisks, which have re-
cently been shown to be capable of producing
strong coupling33 as a consequence of their
longer lifetimes (∼100 optical cycles34). A rich
variety of graphene plasmons have been
investigated33�36 that should allow themanip-
ulation of plasmon propagation and trapping.
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ABSTRACT

Among the many extraordinary properties of graphene, its optical response allows one to

easily tune its interaction with nearby molecules via electrostatic doping. The large

confinement displayed by plasmons in graphene nanodisks makes it possible to reach the

strong-coupling regime with a nearby quantum emitter, such as a quantum dot or a molecule.

In this limit, the quantum emitter can introduce a significant plasmon�plasmon interaction,

which gives rise to a plasmon blockade effect. This produces, in turn, strongly nonlinear

absorption cross sections and modified statistics of the bosonic plasmon mode. We characterize

these phenomena by studying the equal-time second-order correlation function g(2)(0), which

plunges below a value of 1, thus revealing the existence of nonclassical plasmon states. The

plasmon-emitter coupling, and therefore the plasmon blockade, can be efficiently controlled

by tuning the doping level of the graphene nanodisks. The proposed system emerges as a new

promising platform to realize quantum plasmonic devices capable of commuting optical

signals at the single-photon/plasmon level.

KEYWORDS: quantum plasmonics . graphene plasmons . plasmon blockade .
nonclassical plasmons . nanophotonics . strong coupling . graphene nanodisk
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The very small plasmon damping in graphene is
caused by the extraordinary electrical properties of
single-layer carbon,37�39 which together with the pos-
sibility ofmodifying theplasmonic spectrumof graphene
nanostructures via doping40 opens new paths for devel-
oping quantumplasmonic devices capable of controlling
light�matter interaction at the quantum level.
In this article, we show that quantum effects can

introduce a strong nonlinear optical response in a
system formed by a doped graphene nanodisk and a
nearby quantum emitter. We predict a plasmon block-
ade effect under feasible conditions, which allows
actively switching the optical properties of the result-
ing device in a manner analogous to the photon
blockade effect that has been extensively studied in
cooled atoms coupled to photonic cavities. We show
that, in contrast to photon blockade, thewavelength at
which plasmon blockade takes place can be straight-
forwardly tuned simply by changing the charge in the
graphene via electrostatic gating.41 The plasmon block-
ade effect produces nonclassical distributions whenmul-
tiple plasmon states are generated. Our study empha-
sizes nanostructured graphene coupled to quantum
emitters as a viable platform to implement quantum
information devices in robust, tunable structures.
The system under study is depicted in Figure 1. We

consider a graphene nanodisk of diameter D doped to
a Fermi energy EF relative to the Fermi energy for the
neutral disk. This graphene nanostructure supports
localized surface plasmons33 of energy pωp. Specifi-
cally, we focus on a dipolar plasmon with polarization
parallel to the disk and m = 1 azimuthal symmetry. The
quantum emitter, which is placed 10 nm above the

nanodisk, is described as a two-level systemwith excited
and ground states |væ and |Væ separated by an energy pω0.
The entire system is illuminated by an external laser
of frequency ωL. In the absence of any losses, the
dynamical evolution of the interacting system can be
described by a Hamiltonian that consists of three terms:
H = Hfree þ Hint þ Hext. The first, which describes the
evolution of the noninteracting system, reads

Hfree ¼ pωpa
†aþ pω0σ

†σ (1)

where a and σ = |Væ Æv| (a† and σ† = |væ ÆV|) are the
annihilation (creation) operators for the graphene plas-
mon and the excited state of the emitter, respectively.
The couplingbetween the twoexcitations is describedby
the second term

Hint ¼ pg(a†σþ aσ†) (2)

where g is a coupling constant that determines the
strength of the interaction. The last term accounts for
the effect of the laser

Hext ¼ pΩe�iωLta† þ pΩ
�
eiωLta (3)

which operates at frequencyωL with an intensity defined
in terms of the Rabi frequency Ω. In this expression, we
haveneglecteddirect pumpingof the emitter because its
cross section is generally several orders of magnitude
smaller than the one of the graphene plasmon.
We incorporate dissipation via the master equation

for the density operator42 F· = L (F), where the Liovillian43

L is given by

L (F) ¼ i

p
[F, H]þ L 0(F)þ L p(F) (4)

Figure 1. Description of the graphene-nanodisk/emitter combined system under study. (a) A quantum emitter is placed
10 nmabove a doped graphene nanodisk of diameterD and Fermi energy EF. The disk can support localized surface plasmons
of frequency ωp and lifetime Γp

�1. The quantum emitter is described as a two-level system (ground state |Væ and excited state |væ,
transition frequency ω0, excited-state lifetime Γ0

�1). The dipole moment of the quantum emitter, taken to be parallel to the disk,
interacts with the near field of the graphene plasmon with effective coupling strength g. The entire system is illuminated by an
external laser of frequencyωL and intensity quantified in termsof the Rabi frequencyΩ. (b) Energy level diagramof the interacting
systemforω0=ωp. Theenergydiagramsof (a) correspond to thenoninteractingdiskandemitter, inwhich theenergy level spacing
is constant. In contrast, the spacings between the interacting levels in (b) are different as a result of the coupling between the
emitter and the graphene plasmon. This interaction introduces anharmonicity and nonlinearity in the optical response.
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The first term of this expression contains the Hamiltonian
and determines the coherent evolution of the system,
while the Lindblad terms43 L i(F) = Γi/2[2ciFci† � Fci†ci �
ci
†ciF], with i = 0, p, account for the damping of both the
excited emitter state (c0 = σ) and the graphene plasmon
(cp = a).

RESULTS AND DISCUSSION

Plasmon Blockade. Apart from the coupling to exter-
nal light, H is the well-known Jaynes�Cummings
Hamiltonian,44 which has the same ground state asHfree

|ψ0æ = |V0æ, and whose excited states |ψn(æ are pairs of
linear combinations of |vn � 1æ and |Vnæ, where n is the
plasmon occupation number, with eigenenergies

En( ¼ p nωp þ δ

2
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2

4
þ ng2

s0
B@

1
CA (5)

where δ = ω0 � ωp (see Supporting Information). In
each pair of states, the sum of the number of plasmon
and emitter excitations is n. As we show in Figure 1b,
the interaction of the plasmon with the two-level
emitter results in a nonuniform distribution of states
known as Jaynes�Cummings ladder,45 in which the
states of each pair are separated by an energy deter-
mined by the emitter-plasmon coupling g, the detuning
δ, and the quantum occupation number n. The resulting
nonlinear dependence of the excitation energy on n is
equivalent to anharmonicity and has an important con-
sequence: an external light source tuned to be resonant
with the plasmon frequency ωp becomes increasingly
more detuned as the system climbs the energy ladder
and n increases. The detuning with respect to the
uncoupled plasmon frequency is given by (E(nþ1)( �
En()/p� ωp =(((δ2/4þ (nþ 1)g2)1/2� (δ2/4þ ng2)1/2),
which is maximum for δ = 0 (i.e., ω0 = ωp). An increasing
detuning obviously limits the possibility of generating an
arbitrary number of plasmons. We refer to this behavior
as plasmon blockade, in direct analogy to the so-called
photon blockade observed in cavity QED experiments.31

It is important to notice that the nonlinear behavior
associated with the plasmon blockade is only effective
in systems forwhich the coupling g dominates over the
losses Γp and Γ0. In general, plasmonic losses are
several orders of magnitude larger than quantum
emitter losses (Γp . Γ0), and thus the condition for
observation of an efficient plasmon blockade amounts
to g/Γp . 1. This is known as strong-coupling regime,
which is difficult to reach using plasmons supported by
standard metallic nanostructures.16�24 However, the
coupling strength g/Γp associated with the dipolar
plasmon of a graphene nanodisk of diameter D =
100 nm reaches values in the 1.5�3 range for moder-
ate Fermi energies EF = 0.2�0.6 eV, and it decreases for
larger D. Here, we assume typical values for the quan-
tum emitter natural decay rate Γ0 = 5 � 107 s�1, the

nanodisk diameters D = 100�200 nm, and the Fermi
energies EF = 0.2�0.6 eV, for which the plasmon energy
and width take values pωp ≈ 0.1�0.25 eV and pΓp ≈
1�3.5meV(seeMethods formoredetailson thecalculation
of ωp and Γp and their dependence on D and EF).

Figure 2 shows some of the main signatures of
plasmon blockade in the nanodisk-emitter systems.
In what follows, we present results for steady-state

Figure 2. Plasmon blockade. (a) Population of the different
states of a graphene-nanodisk/emitter system for two
different values of the external laser intensity under con-
tinuous illumination conditions. Results for interacting (g/
Γp = 2.55, red) and noninteracting (g/Γp = 0, black) systems
are contrasted. We assume resonant coupling (ω0 =ωp) and
tune the laser frequency to the |ψ0æ f |ψ1þæ transition. For
this laser frequency, only |ψnþæ states are significantly
populated in the interacting system. (b) Average number
of plasmons in the graphene nanodisk Np as a function of
laser intensity for different disk diameters D and Fermi
energies EF (solid curves) under the same conditions as in
(a). The uncoupled system (dashed line) shows a linear
increase of Np with the laser intensity. In contrast, the
coupled system (solid curves) exhibits a clear nonlinear
behavior for |Ω|2/Γp

2 > 10�2. The nonlinearity is more
pronounced for larger graphene-nanodisk/emitter coupling
g (cf. red, blue, and green curves). (c) Absorption cross
section of the graphene-nanodisk/emitter coupled system
normalized to the value of the uncoupled configuration as a
function of laser intensity. A departure from the linear
regime is observed for large laser intensities.
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conditions under continuouswave illumination. In partic-
ular, Figure 2a shows the population of different state
pairs n under stationary conditions. We consider two
different illumination intensities (|Ω|2 = 0.01Γp

2 and
|Ω|2 = Γp

2), take ω0 = ωp, and tune the laser frequency
to be resonant with the |ψ0æ f |ψ1þæ transition. The
black bars are the results for the uncoupled system (i.e.,
in the absence of the quantum emitter), while the red
bars refer to the interacting system with a coupling
constant g = 2.55Γp. For low illumination intensities
(upper part), the ground state (n = 0) takes most of the
weight, while the first excited states (n = 1) are only
marginally populated. In contrast, for high intensity
(lower part), the population of the system is distributed
among different excited states but with very different
profiles for configurationswith andwithout coupling. For
the uncoupled system, the population follows a broad
Poisson distribution centered around n = 4, but for the
coupled system, thepopulation ismainly concentrated in
the ground (n= 0) and singly excited (n= 1) states. This is
a direct consequence of the nonlinearity and anharmoni-
city associated with the plasmon blockade, which pre-
vents efficient plasmon excitation beyond n = 1.

In Figure 2b, we show the average number of
plasmons Np = Æa†aæ supported by the graphene
nanodisks as a function of external illumination inten-
sity for different values of EF and D (solid curves). The
corresponding calculated coupling constant (g, see
Methods), plasmon frequency, and decay rate (ωp

and Γp) are shown in the text insets throughout
Figure 2b,c with color codes standing for the selected
values of EF and D. Obviously, the uncoupled system
(g = 0) presents a linear dependence on intensity, Np =
4|Ω|2/Γp

2 (dashed curve, plotted for reference). In con-
trast, a significant departure from this linear behavior is
observed above |Ω|2/Γp

2≈ 10�2 in the coupled system as
a signature of plasmon blockade (solid curves). As ex-
pected, the nonlinearity increases with g. In the small
intensity limit, the linear behavior is recovered for any
value of g, as Np is well below 1 (e.g., for |Ω|2/Γp

2 < 10�2).
However, even in this limit, the plasmon blockade se-
verelymodifies the plasmon statistics, aswe showbelow.

The normalized absorption cross section is shown
in Figure 2c as computed by assuming that the domi-
nant dissipation channel is inelastic plasmon decay,
and that the radiative part represents only a small
fraction, e1%, of the total decay rate.46 In this limit,
the absorption cross section can be written as σabs =
pωpΓpNp/I, where I � |Ω|2 is the laser intensity (see
Methods for the explicit dependence of I on |Ω|2). It is
convenient to normalize the cross section to that of the
uncoupled graphene disk σabs,0 as

σabs

σabs, 0
¼ Np

4

Γ2
p

jΩj2 (6)

As shown in Figure 2c, the normalized absorption
decreaseswith increasing intensityandthenanodisk-emitter

system behaves as a saturable absorber, again as a
result of plasmon blockade, which ismore pronounced
for larger g (cf. green and blue curves).

Nonclassical Plasmons. Besides the plasmon blockade
effect, the coupling between a graphene plasmon and
a quantum emitter can also produce strong modifica-
tions in the plasmon statistics, which we characterize
through the equal-time second-order correlation func-
tion, defined as47 g(2)(0) = Æa†a†aaæ/Np

2. This quantity
becomes 1 for Poissonian distributions (also known as
coherent states), which also characterize photons in a
coherent laser source. In contrast, g(2)(0) > 1 is asso-
ciated with thermal distributions (super-Poissonian
statistics), leading to bunching of photon pairs emerging
from a thermal source (similar bunching is expected in
thermally excited plasmons in uncoupled nanodisks).
However, it is only for g(2)(0) < 1 (sub-Poissonian statistics,
leading to antibunching48) that a quantum description of
photons or plasmons is needed, as a classical model
cannot produce these values of the correlation function.
Indeed, g(2)(0) = 0 would mean the existence of a single
plasmon state.

For graphene nanodisk plasmons, g(2)(0) can be
directly measured from the photons emitted via radia-
tive plasmon decay.26 Although less than one in a
hundred plasmons decays by emitting a photon,33

even for the smallest intensities of the external illumi-
nation under consideration the resulting photon flux
should allow for experimental verification of the non-
classical, quantumplasmonic regime: for instance, for a
moderate incident intensity Ω = 0.1Γp, the rate of
photon generation ≈ NpΓp,rad ≈ 4 � 10�4Γp ≈ 109 s�1

is significant.
Figure 3 shows g(2)(0) as a function of laser inten-

sity for the different graphene nanodisks discussed in
Figure 2. We assume that the laser frequency is

Figure 3. Nonclassical plasmon states. We show the equal-
time second-order correlation function g(2)(0) = Æa†a†aaæ/Np

2

versus laser intensity for different disk diameters D and
Fermi energies EF (solid curves) under the same conditions
as in Figure 2. We also show g(2)(0) = 1 (dashed line), as
obtained for the uncoupled system. For finite coupling
(solid curves) and relatively low intensity, g(2)(0) lies below
1 and decreases with increasing g/Γp, thus revealing the
creation of nonclassical plasmon states. For large intensity,
g(2)(0) increases and eventually becomes larger than 1.
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resonant with the |ψ0æf |ψ1þæ transition, andω0 =ωp.
In the absence of a quantum emitter (uncoupled
system), we have g(2)(0) = 1 (dashed line), so that
plasmons are generated in coherent states, which are
typical of coherent classical systems. When coupling is
switched on (solid curves), g(2)(0) drops below 1, and
thus, nonclassical plasmon states are generated. Further-
more, theminimum value that is reached depends on the
coupling strength, decreasing with increasing g. As the
laser intensity grows, g(2)(0) approaches the classical
threshold g(2)(0) = 1 and eventually rises above this value.
This behavior can be understood by examining Figure 2a,
in which we see that small values of |Ω|2/Γp

2 produce a
negligible population of states above n = 1, therefore
resulting in sub-Poissonian statistics. In contrast, for larger
intensities, the population of n > 1 states increases, thus
resulting in the super-Poissonian behavior shown in
Figure 3 despite the plasmon blockade.

Tunability of Plasmon Blockade. A great advantage of
the plasmons supported by the graphene nanodisks is
the possibility of controlling their properties by tuning
the Fermi energy. This can be achieved, for instance, by
introducing electrostatic doping,40 thus allowing us
the tuning of both the plasmon energy and its coupling
with the quantum emitter, and by extension, the
modulation of the plasmon blockade effect. This is
illustrated in Figure 4a, which shows the normalized
absorption cross section defined by eq 6 as a function
of the graphene Fermi energy for different values of
the laser intensity. The excitation energy of the quan-
tum emitter is set to 0.16 eV, which coincides with the
plasmon energy for EF = 0.4 eV. As in the remainder of
this work, the laser frequency is chosen to be resonant
with the |ψ0æ f |ψ1þæ transition.

At small intensities (red curve), the normalized ab-
sorption cross section approximately follows the same
behavior as in the uncoupled system (dashed line), with
a slight departure for low Fermi energies. When |Ω|2

increases (blue and green curves), the plasmon blockade
effect produces significant nonlinearity. The nonlinearity
is stronger for EF below the resonance condition EF =
0.4 eV. This behavior is directly connected to the evolu-
tion of |ψn(æ states with detuning δ: these states are
linear combinations of |vn � 1æ and |Vnæ, but absorption
dominates in the latter because it contains a larger
number of plasmons. More precisely, the external illumi-
nation is tuned to induce transitions from the ground
state to |ψ1þæ. For EF > 0.4 eV (i.e., g < |δ| and δ < 0), one
finds that |V1æ has stronger weight in |ψ1þæ (see Support-
ing Information), thus leading to higher absorption. In
contrast, for EF < 0.4 eV, where g < |δ| and δ > 0, the
weight of |V1æ is smaller and absorption is reduced. This
example clearly illustrates that it is possible to enhance
plasmon blockade by detuning the plasmon energy,
which of course can be controlled via the Fermi energy
of the graphene nanodisk, providedwe have coupling to
a quantum emitter.

The enhancement of the plasmon blockade also
influences the statistics of the generated plasmons, as
shown in Figure 4b, where g(2)(0) is plotted as a
function of the Fermi energy for the same conditions
as in Figure 4a. The dashed line represents the un-
coupled system (classical states). In the coupled system
(solid curves), we again observe two different regions:
for large values of EF, the system approaches the
classical limit (g(2)(0) f 1) due to the reduction in the
efficiency of plasmon blockade. In contrast, for small EF,
the plasmon blockade is enhanced, giving rise to anti-
bunching (g(2)(0) < 1). Clearly, the antibunching increases
when the Fermi energy becomes smaller than EF = 0.4 eV,
where the plasmon and the laser are on resonance. As
expected, this effect is more pronounced for smaller
illumination intensities (see also Figure 3).

Interestingly, there is an optimum value of EF for
which g(2)(0) reaches a minimum as a result of the
interplay between the plasmon-emitter coupling g and

Figure 4. Tunability of graphene-nanodisk/emitter systems.
(a) Normalized absorption cross section of a graphene-
nanodisk/emitter system as a function of graphene Fermi
energy for different values of the external laser intensity.
The nanodisk diameter is D = 100 nm. The emitter has fixed
excitation energy pω0 = 0.16 eV, which coincides with the
plasmon energy pωp for EF = 0.4 eV. We tune the laser
frequency to be resonant with the |ψ0æ f |ψ1þæ transition.
The cross section is normalized to that of the uncoupled
system. At low laser intensity (red curve), the cross sections
with andwithout coupling are very similar. As |Ω|2 increases
(blue and green curves), the cross section becomes strongly
nonlinear for small EF and essentially linear for large EF. The
transition between these two regimes is sharper for larger
laser intensity. (b) Equal-time second-order correlation
function g(2)(0) under the same conditions as in (a). For
large intensity, g(2)(0) is found to be close to the classical
value g(2)(0) = 1. When the intensity decreases, we again
observe two different regimes: for small EF, the system
exhibits sub-Poissonian statistics associated with the exis-
tence of nonclassical plasmons, while for larger EF, a classi-
cal behavior is recovered.
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the detuning δ. When the latter increases for EF < 0.4 eV,
the state |ψ1þæ approaches |v0æ, thus preventing higher n
states to be populated, which results in lower g(2)(0).
However, at the same time, g decreases, therefore reduc-
ing the anharmonicity of the energy ladder, which con-
tributes to increasing the value of g(2)(0). The trade-off
between these two effects results in anoptimumvalue of
EF at which g(2)(0) presents a minimum.

CONCLUSIONS

In summary, we have fully characterized the non-
linear optical response of a graphene nanodisk coupled
to a quantum emitter. Because of the extraordinarily
large lifetimes of graphene plasmons, this system is
capable of reaching the strong-coupling regime,
where a plasmon blockade effect emerges naturally
in its optical response. This effect has two important
consequences: (i) the optical absorption cross section

is dramatically modified and becomes strongly non-
linear for large illumination intensities; and (ii) the
correlation of the generated plasmons exhibits a
clear nonclassical behavior, as we demonstrate by
studying the equal-time second-order correlation
function g(2)(0). More precisely, nonclassical plasmo-
nic states (i.e., states for which g(2)(0) < 1) are gener-
ated due to the plasmon blockade, an effect that
could be possibly detected by measuring correla-
tions of photons emitted by radiative decay. Inter-
estingly, we show that it is possible to control the
optical nonlinearity of the graphene nanodisk/emit-
ter system by tuning the plasmonic spectrum of the
graphene nanodisk via electrostatic doping. Our
work opens new paths for the design of novel quan-
tum plasmonic devices with applications ranging
from active metamaterials to quantum information
processing.

METHODS
Optical Response of Graphene Nanodisks. The optical response

of graphene nanodisks has been characterized in previous
works.33,46 Here we follow the same methodology, consisting
of rigorously solving Maxwell's equations using the boundary
element method (BEM).49 For our purposes, the nanodisks are
parametrized as thin films of thickness t with rounded edges
and dielectric function ε= 1þ 4πiσ/ωt. We use t= 0.5 nm, which
is well converged with respect to the t f 0 limit for the disk
diameters under consideration. The conductivity σ(ω) is taken
from the local limit of the random-phase approximation for an
extended graphene sheet50,51 (see ref 33 and its Supporting
Information for more details). Furthermore, we assume an
intrinsic relaxation time τ = μEF/evF

2, where vF ≈ c/300 is the
Fermi velocity and μ = 10 000 cm2/(V 3 s) is the measured dc
mobility.37 We extract the plasmon energies pωp and widths
pΓp by fitting the plasmon peak of the numerically calculated
absorption spectra to a Lorentzian. This classical description has
been proved52 to be accurate enough and well reproduced by
ab initio calculations for the dimensions under consideration,
with nanodisk diameters larger than 40 nm.

The coupling constant g requires a more elaborate treatment.
In the classical limit, the decay rate of a quantum emitter placed
close to the graphene nanodisk is given by the expression1

Γ ¼ Γ0 þ 2
p
Imfμ�0 3 Eindg (7)

where Γ0 is the free-space decay rate, μ0 is the quantum emitter
dipole moment, and Eind is the field self-induced by the emitter
due to the presence of the graphene nanodisk. We obtain Γ
through the calculation of the self-induced field generated by a
dipole and evaluated at its own position. This calculation, which
involves the rigorous solution of Maxwell's equations, is per-
formed using BEM. Now, it is clear that this value of Γ must be
equal to the emitter decay rate computed from the quantum
model in the limit of weak coupling (i.e., g/Γpf 0). In such limit,
we have |ψ1�æf |v0æ, and therefore Γ≈ Im{E1�} becomes (see
Supporting Information)

Γ � Γ0 þ 4g2

Γp
(8)

and finally, we obtain the coupling parameter g by comparing
eqs 7 and 8.

Figure S1 in the Supporting Information shows the relevant
graphene nanodisk parameters as a function of disk diameter

D and Fermi energy EF. The plasmon energies lie in the
0.10�0.25 eV range for the diameters and Fermi energies
considered in this work, while the decay rates lie in the 1.0�
3.5meV range. It is interesting to note that the plasmondecay rate
is almost independent of diameter. Finally, the values of the
normalized coupling constant g/Γp lie always above 1, indicating
that the graphene-nanodisk/emitter systems under consideration
are in the strong-coupling regime. Furthermore, for the para-
meters used in this paper, the crossover from the strong to the
weak coupling regimes takes place when the separation between
thequantumemitter and thegraphenenanodisk is on theorder of
a few tens of nanometers. The preservation of the strong-coupling
regime to such large separations, which is a consequence of the
narrowness and strengthof graphene plasmons,makes it possible
to use optical or electrostatic trapping to place the quantum
emitter in close proximity to the graphene nanostructure, thus
avoiding the undesired effects of coupling to a substrate or
electron�hole excitations of the carbon sheet that can be an
efficient source of quantum decoherence. Alternatively, a passive
dielectric spacer could be used in which case the graphene disk
parameters would have to be tuned slightly to accommodate for
the plasmon red shift and reduced emitter coupling strength g.

Plasmon Dipole Moment and Rabi Frequency. The polarizability of
a graphene disk can be accurately modeled using the following
expression46

R(ω) ¼ 3c3Γp, rad
2ω2

p

1
ω2

p �ω2 � iΓpω3=ω2
p

(9)

where ωp is the plasmon frequency, and Γp,rad and Γp are the
radiative and the total plasmon decay rates, respectively.
Furthermore, the polarizability associated with the plasmon
resonance can also be written as33

R(ω) � μ2p
pωp � pω � ipΓp=2

(10)

where μp is the dipolemoment of the graphene plasmon, which
can be determined by comparing this expression with eq 9 for
ω = ωp. From here, we obtain

μ2p ¼ 3
4
pΓp, rad

c

ωp

 !3

(11)

The Rabi frequency is defined as

Ω ¼ μpE

p
(12)
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where E is the electric-field amplitude corresponding to an
external illumination intensity I = [c/(2π)]E2. Using eq 11, we can
relate the Rabi frequency to the intensity as

I ¼ 2cp
3π

Γ2
p

Γp, rad

 !
ω3

p

c3
Ω

Γp

 !2

(13)

We need to know ωp, Γp, and Γp,rad in order to evaluate this
expression. The first two of these parameters can be obtained as
explained in the previous section, and we find Γp,rad by fitting
the extinction cross section calculated from BEM to σext = (4πω/
c)Im{R(ω)}, with R(ω) given by eq 9.

Figure S2a in the Supporting Information shows the plas-
mon radiative decay rate normalized to the total decay rate as a
function of disk diameter D for three different values of the
Fermi energy (EF = 0.2, 0.4, and 0.6 eV). Radiative decay system-
atically amounts for less than 1% of the total decay. Finally, we
show in Figure S2b the Rabi frequency calculated from eq 13
using these results for Γp,rad. Incidentally, the Rabi frequencies
considered in Figure 2 of this article lie in theΩ = 0.01Γp� 5Γp

range, which corresponds to moderate laser intensities extend-
ing from I = 96 W/m2 to I = 1.3 � 108 W/m2.
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